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Abstract

An efficient and convenient route to two novel quasimacrocyclic archaebacterial lipid analogues is presented.
The target compounds2 and3 are prepared in seven and four steps, respectively, from known starting materials, and
are useful for the study of synthetic tethered bilayer membranes. © 2000 Elsevier Science Ltd. All rights reserved.
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We recently reported a novel, generic biosensor based on an ion channel switch embedded in a
synthetic lipid membrane tethered onto a planar gold electrode.1 In order for the ion channel switch
to function in a real environment such as whole blood or plasma, we required a stable, fluid bilayer
membrane. The formation of such a membrane was achieved through the use of synthetic lipids based on
the structural motifs found in archaebacterial lipids. Microorganisms belonging to the Archaea domain
typically thrive in environments usually considered too hostile for conventional life such as areas of
high temperature, high salt content and/or pH extremes.2 The lipid components of membranes of the
archaebacteria are essential for this extraordinary stability, and as such there have been numerous studies
concerning the isolation, structural elucidation and synthesis of these lipidic compounds.3 Additionally,
these lipids are of interest for applications such as drug delivery, separations and photochemical energy
conversion.4

Typically, archaebacterial lipids consist of a branched hydrocarbon (such as the isoprenoid phytanol)
connected to a glycerol backbone via an ether linkage, in contrast to the lipids of eubacteria and eu-
karyoates which possess ester-linked straight chain fatty acids. Furthermore, archaebacterial membranes
often contain macrocyclic lipids with ring sizes up to 72 atoms, such as the tetraether1 obtained from
the archaebacteriumSulfolobus solfataricus.5
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In this paper we report efficient synthetic routes for two novel quasimacrocyclic lipidic species (2 and
3), that have been used in the formation of tethered lipid membranes.1

The compounds designed in this work (2 and3) were modelled closely on macrocyclic archaebacterial
lipids in that they contained phytanyl groups ether linked to glycerol moieties. The glycerol units were
linked together by non-branched alkyl chains connectedvia a central biphenyl group, allowing the entire
construct to span a bilayer membrane (�38 Å), whilst the phytanyl groups were required in order to
ensure that the lipids remained in a liquid crystalline phase. The biphenyl group was employed so that
the lipid could not readily adopt a U-shape (i.e. in one leaflet of a bilayer membrane) as has also been
reported for other quasimacrocyclic lipid species.6

Central to the synthesis of both quasimacrocycles2 and3 was the preparation of a monophytanyl-
ated glycerol unit. Commercially available 1-O-benzyl glycerol was silylated at the primary hydroxyl
(TBDMSCl, imidazole, DMF, 85%) and reacted with phytanyl bromide7,8 (NaH, THF, 81%) to afford
the differentially protected monophytanyl glycerol derivative (Scheme 1). While desilylation of4 could
be affected, the yields of the product were variable and so an alternative, more robust, route to this
material was sought.

Scheme 1. (i) TBDMSCl, imidazole, DMF; (ii) Phytanyl bromide, NaH, THF

Commercially available 1,3-di-O-benzyl glycerol was reacted with phytanyl bromide (KOH, PhCH3,
61%) and the product subsequently hydrogenolysed (Pd/C, H2, MeOH, 97%) to afford the monophytanyl
glycerol5 as a colourless oil (Scheme 2). Condensation with benzaldehyde (cat.p-TSA, PhCH3) afforded
the six-membered ring ketal6 which was smoothly reduced to the required 1-O-benzyl-2-O-phytanyl
glycerol 7 by either DIBALH (CH2Cl2, PhCH3, 69%) or in situ-generated borane (KBH4, BF3�Et2O,
44%). The intermediate6 could also be prepared by reaction of 2-phenyl-5-hydroxy-1,3-dioxane with
phytanyl bromide; however, the low yield for the preparation of the starting dioxane9 made this route
unattractive.

Scheme 2. (i) Phytanyl bromide, KOH, PhCH3; (ii) H 2, Pd/C, MeOH; (iii) PhCHO,p-TSA, PhCH3; (iv) DIBALH,
PhCH3/CH2Cl2
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The alternative regioisomer of7 was prepared by starting with known diol8.7 Monobenzylation of
8 was achieved through alkylation (BnBr, CH2Cl2/THF, 68%) of the in situ-derived dibutylstannoxane
derivative,10 itself formed by treatment of8 with dibutyltin oxide (Bu2SnO, PhCH3), to afford 1-O-
phytanyl-2-O-benzyl-glycerol9 (Scheme 3).

Scheme 3. (i) Bu2SnO, PhCH3; (ii) BnBr, CH2Cl2/THF

With efficient routes to two regioisomers of mono-phytanylated mono-benzylated glycerol, we next
explored linking each unit via a membrane spanning tether. Thus, the known dibromide1011 was reacted
under basic conditions with either7 or 9 to afford the bromolipid species11 and12, respectively, in 52
and 70% yield (Scheme 4).

Scheme 4. (i)9, KOH, PhCH3; (ii) 7, NaH, THF

Coupling of the bromolipid11 was achieved by reaction with 4,40-biphenol (NaH, DMF) to give the
dibenzylated membrane spanning lipid in good yield (65%). Removal of the protecting groups under
hydrogenolytic conditions (Pd/C, H2, MeOH, 55%) afforded the desired membrane spanning lipid2
as a wax. Reaction of the alternative bromolipid12 under identical conditions afforded the isomeric
membrane spanning lipid3, again in fair yield (45% for the dibenzylated compound, 95% yield for the
debenzylation) (Scheme 5).

Scheme 5. (i) 4,40-biphenol, NaH, DMF; (ii) H2, Pd/C, MeOH/CH2Cl2

The synthetic procedures detailed above were carried out on a scale such that multigram quantities of
these membrane spanning lipids were obtained. For instance, diol2 was produced in >100 g quantities
from 7 prepared by using the method shown in Scheme 2. All new materials prepared in this work have
been fully characterised12 and the product diols2 and3 have been subsequently coupled to disulfide
containing species for attachment to gold and use in tethered membrane system.1 Further studies on
these and related species will be reported in due course.
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